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Capabilities: Overview ’@/

Goal: Detect small (sub 10cm) debris via
plasma signature

Simulate (1D-3D) precursor and pinned

electrostatic solitons produced by orbital
debris

— including damping effects and dissipation due
to variation in the plasma environment

Autonomously identify solitons in noisy
data using inverse scattering transform

* Experimental facilities:

— 2 dusty microTorr vacuum chambers, emissive 74 =7 2o . &
filament, 4K fps high speed camera (in vacuum Figure Source: Nature, Vol 376, 1995,
chamber)

Astrodynamics




Soliton Simulation Capabilities -

e A. Truitt and C. Hartzell, “Simulating Plasma
Solitons from Orbital Debris using the Forced
Korteweg-de Vries Equation”, Journal of Spacecraft
and Rockets. 2020. Vol 57 (5), 876-897.
https://doi.org/10.2514/1.A34652 !
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e A. Truitt and C. Hartzell, “Simulating Damped lon
Acoustic Solitary Waves from Orbital Debris”,
Journal of Spacecraft and Rockets. 2020. Vol 57 (5)
975-984. https://doi.org/10.2514/1.A34674
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e A. Truitt and C. Hartzell, “3D Kadomtsev- ° ]
Petviashvili Damped Forced lon Acoustic Solitary e l . | . .
Waves from Orbital Debris”, ). of Spacecraft and 600 400 200 ° 200 400 600
Rockets, 2021, Vol. 58, No. 3, pp. 848-855

: Precursor, 2.5mm debris
https://doi.org/10.2514/1.A34805. ’ ¢
ps:// e/ L 1200km circular orbit
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Soliton Simulation Capabilities @/
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Modeled using forced KdV equations (1D), KP
equations (2D,3D) —

Focused primarily on wave in plasma density,
but from density, can derive electric field

Questions we have answered:

Wave amplitude

— what size debris produce precursors? at what
altitude, latitude, longitude?

— what are the characteristics of the precursors: 050 05 o
amplitude, width, generation frequency, time to & 8 o e ot o g gy et for
first generation, distance traveled prior to

T
dissipation: Example 3D precursor soliton

— could be extended for pinned solitons Source: Truitt and Hartzell, 2021, JSR
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On-Going Work: Signal Inversion ’ﬁ-/
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* Agnostic to sensor, given a measurement of the plasma density,

how can we detect the presence of a soliton?

— inverse scattering transform works with forced, noisy signal

— Publication soon to be submitted to Physics of Plasmas

* Given a detected soliton, what can we infer about the debris?
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(b) Fast Fourier transform in space of soliton signal.

No clearly identifiable mode.
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(c) PIST transform of soliton signal at ¢t = 0, 2.48,

and 5. Modulus of each mode is on the right y axis

and marked with the differently oriented triangles.
The amplitudes use the circular markers.

FIG. 2: Spectrum of u(z) = sech? (?(r - 2t§) using
the FFT and PIST.
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Lab Facilities - %
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Two ‘dusty’ vacuum chambers
capable of microTorr levels

— 22.75” diameter, 11” deep collar-
type vacuum than can be mated
to 18”x22” bell jar

— 24”"x24”x30” chamber

4K fps high speed camera that
can be used in the larger vacuum
chamber (PCO Dimax CS3)

emissive filament plasma source
44 core lab server
access to UMD’s supercomputers
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